
Marcus Craske

Registration number 6195601

PALS – Programming Assessment and
Learning System

Supervised by Dr Pierre Chardaire

University of East Anglia

Faculty of Science

School of Computing Sciences

Abstract

The automatic assessment of programming skills has been an emerging area since the

1960s, linked with disciplines such as computer aided assessment (CCA) software and

software metrics, with many existing systems abandoned or non-existent. This project

aims to create a new cross-platform system for assisting self-guided formative learn-

ing and summative assessment, called PALS – Programming Assessment and Learning

System.

The Java programming language is the focus of assessment, with extensibility for

new languages in the future through a plugin architecture, which is conducted through

dynamic and static analysis within a secure and sandboxed environment. The system

also provides administration tools to facilitate the easy and quick creation of material,

collection of basic statistical information and management of users and modules.

There is also support for clustering multiple instances across machines to handle large

workloads and for additional security.

Acknowledgements

A great amount of gratitude is due towards the CMP faculty for their mentoring over the

last three years, especially Dr Pierre Chardaire, my project supervisor, for his invaluable

feedback and support.

CMPC3P2Y

Contents

1. Introduction 1

2. Existing Work 2

2.1. Evaluation . 8

3. Project Planning 12

3.1. Requirements Analysis . 12

3.2. Time Management . 13

3.3. Software Engineering . 14

4. Design and Implementation 15

4.1. Architecture . 15

4.1.1. RMI Communication . 15

4.1.2. Storage . 16

4.1.3. Settings . 16

4.1.4. Core . 16

4.1.5. Website . 16

4.1.6. Database . 17

4.1.7. Plugins . 19

4.1.8. Hooks . 20

4.2. Plugins . 20

4.2.1. Assignment Marker . 20

4.2.2. Default Auth . 21

4.2.3. Miscellaneous . 21

4.3. Applications . 22

4.3.1. Java Sandbox . 22

4.3.2. Windows User Tool . 23

4.3.3. Node . 24

4.4. Administration . 24

4.4.1. Questions . 24

4.4.2. Modules & Assignments . 25

Reg: 6195601 iii

CMPC3P2Y

4.4.3. Users and Groups . 25

4.4.4. Mass-Enrolment . 26

4.4.5. Stats . 26

4.4.6. System . 27

4.5. Security . 27

5. Design and Implementation – Assessment 28

5.1. Question Types . 29

5.1.1. Code Java . 29

5.2. Criteria Types . 30

5.2.1. Matching . 30

5.2.2. Java – Code Metrics . 31

5.2.3. Java – Testing Inputs . 31

5.2.4. Java – Testing Standard Input and Output 32

5.2.5. Java – Testing Existence . 33

5.2.6. Java – Enum Constants . 34

5.2.7. Java – Inheritance & Interfaces 34

5.2.8. Java – Custom Code . 34

6. Evaluation 35

6.1. Completion . 35

6.2. Previous Systems . 35

6.3. Problems Encountered . 36

6.3.1. Java Sandbox . 36

6.3.2. Assignment Marker . 36

6.4. Throughput Testing . 37

6.5. Limitations & Future Work . 38

6.5.1. Method Invoked . 38

6.5.2. Multiple Programming Languages 38

6.5.3. Assignment Marker . 39

6.5.4. Resits . 39

6.5.5. Marking . 39

Reg: 6195601 iv

CMPC3P2Y

6.5.6. Randomised Snippets . 40

7. Conclusion 40

References 41

A. Organisation of the accompanying submission disc 44

B. Entity Relationship Diagram 44

Reg: 6195601 v

CMPC3P2Y

1. Introduction

The automated assessment of programming skills has been around since the 1960s,

with the first system, Automatic Grader, running a student’s program from a punch-

card and comparing the results to the correct answers stored elsewhere in memory

(Hollingsworth, 1960). Three generations of systems, as defined by Douce et al. (2005),

have since emerged. The first generation required modifications to operating systems

and compilers, as seen with Hollingsworth (1960). The second generation consisted

of graphical-interfaces, scripts and tools; with systems such as ASSYST (Jackson and

Usher, 1997) and Ceilidh (Benford et al., 1995) using UNIX shell scripts and tools, as-

sessing work with techniques such as dynamic profiling, software metrics and testing

code-correctness. The third, and present, generation of systems use more sophisticated

assessment techniques and web-based interfaces, with BOSS (Joy et al., 2005) allowing

for unit testing with the Java programming language, and CourseMarker (Higgins et al.,

2003) capable of being segmented over a network and assessing diagrams.

With some institutions enrolling hundreds of students each year, each producing

multiple programs, the marking of programming skills is difficult and time-consuming,

which can result in fewer exercises and thus less experience for students (Blumenstein

et al., 2004). Human marking can also be subjective.

Many programming assessment systems lack features and are no longer under devel-

opment; almost all of them, with the exception of BOSS, are not open source and thus

cannot form the basis of new systems, as found by Ihantola et al. (2010b) and myself.

CourseMarker, originally called Ceilidh, being most notable, and also obtained by 43

academic institutions (including the University of East Anglia) (Symeonidis, 2006); it

also required licensing. The only pre-existing active system found was BOSS, with its

main purpose being a place to upload and store assignments with some automated test-

ing (such as using JUnit) (Joy et al., 2005). Most systems would only provide certain

features, with CourseMarker not natively supporting multiple choice questions without

external tools. Style++ only assessed typography (indenting, comments) and analysis of

variable usage (incorrect data-types, uninitialized variables) for C++ (Ala-Mutka et al.,

2004). QuizPACK would only partially randomise snippets of provided code for ques-

tions in a timed environment (Brusilovsky and Sosnovsky, 2005).

Reg: 6195601 1

CMPC3P2Y

This project has created a new third-generation system called PALS, Programming

Assessment and Learning System, which allows the assessment and, through formative

exercises, learning of programming skills. This is achieved by combining and building-

upon the pre-existing work in areas such as dynamic and static analysis with uploaded

programs and the ability to create different types of questions (multiple choice, single

response, code).

This report first begins by looking at existing work, through a literature review, with

an evaluation to highlight the important points learned and how it can be applied to the

context of my project. This is followed by project planning, which covers: requirements

analysis, planning and software engineering. Then the design and implementation phase

of the project, which discusses the details of how PALS has been created. This section

is broken-up into parts, discussing the general architecture, the initial plugins used to

form the overall system’s functionality, the assessment of students, administration, for

lecturers and system administrators, and security. A reflection is then made on the

progress and issues experienced with the project, through an evaluation, with the report

ending on a conclusion.

2. Existing Work

The requirement for a system capable of automatic assessment of programming skills

predominantly comes from an increase in the number of students enrolled on program-

ming courses/classes and the lack of resources to promptly mark and provide feedback

(Joy et al., 2005; Higgins et al., 2003) from manual assessment. It has also been men-

tioned that the task of manual assessment is laborious and error-prone (Jackson and

Usher, 1997), with marking hard to keep fair (Cheang et al., 2003) because of the pos-

sibility of inconsistency between markers (Thorburn and Rowe, 1997). The automating

of assessment of programming skills allows for objective marking and more exercises to

be created, because of less time and resources required for marking, giving students the

potential to gain more experience and feedback (Saikkonen et al., 2001; Cheang et al.,

2003).

An automated assessment system can also become a learning environment, whereby

Reg: 6195601 2

CMPC3P2Y

students can learn from their mistakes with sufficient feedback; this is useful for students

learning remotely (Higgins et al., 2003). This is also one of the intentions of Style++

(Ala-Mutka et al., 2004), a tool for typographic analysis of C++, where students run the

tool on their code to produce an analysis on their coding style. Higgins et al. (2005)

states too much feedback can have a reverse effect, whereby students do not think about

how to improve their work.

Relying on a system to entirely conduct assessment has not been the case, with AS-

SYST (Jackson and Usher, 1997) being used as a tool for assisting with spotting errors

missed from human marking; this is due to trust issues with both the lecturers and stu-

dents. This is not surprising, with systems and tools such as Style++ able to produce

false negatives from consistency issues with a programming language’s specification

(Ala-Mutka et al., 2004). Joy et al. (2005) argue elements such as structure, comment-

ing and the correct usage of language constructs are better to be marked by a human,

who use automated techniques to assist and speed-up the process of marking; this has

been employed with BOSS, which is a system intended for the storage and submission

of assignments. However, SchemeRobo (Saikkonen et al., 2001) is completely auto-

mated because of a lack of human resources to provide feedback instantaneously; this

may also be because the system is aimed at having a greater number of smaller exercises,

whereas BOSS is marking entire assignments.

The methods of assessment used for code in most systems include white box and

black box testing and typography analysis; some systems are able to determine authen-

ticity (such as plagiarism detection) and provide questions such as multiple choice /

response.

White box testing looks at the internal structure of code, which is commonly achieved

using software metrics, such as: lines of code (LOC), average length of identifiers,

number of blank lines (Thorburn and Rowe, 1997); without any program execution – a

process called static (code) analysis. McCabe’s cyclomatic complexity metric (McCabe,

1976), as seen in ASSYST, calculates the minimum number of linear independent paths

of a piece of code, V(G). This is used as an indicator of maintainability because of the

amount of testing required. This is achieved by converting code into a control flow

graph and applying the following formula, for a graph which is not strongly-connected

Reg: 6195601 3

CMPC3P2Y

– meaning the connected components, or exit nodes (in this context), do not link back

to the root node:

V(G) = e - n + 2p

Where e is the number of edges, n is the number of nodes and p is the number of

connected components. This metric has been criticised by Shepperd (1988) as lacking

theoretical foundations, with the value of V(G) remaining as one for a linear sequence

of statements for any length, and lacking the depth and context of a decision.

Another white box technique is testing for the existence of features, such as: methods,

classes and even constructs, as seen in CourseMarker (Higgins et al., 2003). This can

also be used to blacklist the usage of certain libraries or constructs; this was used by

Saikkonen et al. (2001) for when students had to reimplement a feature, of the Scheme

language, for reversing a list. Their system could also convert code into an abstract

syntax tree, which could be compared against a model skeleton.

Black box testing is generally used to determine code correctness by ensuring a pro-

gram meets its required specification, by testing the inputs and checking for the correct

output. A common technique, used since the first generation of systems, is dynamic

analysis, where a program is executed and the output is compared against a model

(Hollingsworth, 1960; Higgins et al., 2003; Cheang et al., 2003). Ceilidh achieves dy-

namic analysis by using a separate tool (creating an additional operating-system pro-

cess), which takes the output of a program and uses regular expressions to determine if

it is the same as a model output provided for an exercise (Benford et al., 1995). Online

Judge (Cheang et al., 2003) and ASSYST (Jackson and Usher, 1997) also measure the

efficiency of a student’s program based on its execution time.

Instead, SchemeRobo (Saikkonen et al., 2001) and PASS (Thorburn and Rowe, 1997)

compile an individual function and test a range of values, with PASS using a subset of

randomly picked numbers between a range (stating it would be impractical to test the

full range of possible inputs). BOSS uses a third-party tool called JUnit, where classes

are created to test individual methods by passing test data and asserting conditions on

the output.

The assessment of coding style is achieved using typographic analysis, such as: nam-

ing conventions, commenting and indentation. Style++ was created for students to self-

Reg: 6195601 4

CMPC3P2Y

analyse their code and fix common issues, as well as to aid teachers in the marking of

work. The article states that students wrote more reliable and understandable code,

and it also provides a table displaying the frequency of style issues, in programming

assignments, before the usage of Style++. However, this table lacks the frequency of

issues after the usage of Style++, thus this claim is questionable because there is no

comparative group.

Testing just code alone may be insufficient to test the programming skills of a student,

since they may not entirely understand what they are writing. Ceilidh allowed multiple

choice questions and written response exercises (Benford et al., 1995). CourseMarker,

created as the successor to Ceilidh, does not natively allow multiple choice questions

and requires students to either run a separate program or for the system to use an external

tool to mark submitted code as a multiple choice question (Higgins et al., 2003).

Such testing, with static questions, presents plagiarism issues, especially in non-

controlled scenarios such as away from a classroom; one approach used in CCA sys-

tems, in areas such as maths and physics, is parametrized questions. Due to a lack of

such a system for programming, Brusilovsky and Sosnovsky (2005) created QuizPack.

The system allows the same fragments of code to be used with parameters for generating

random, as opposed to having static, values; these fragments of code are then compiled

and executed, with the value compared against the student’s answer. An issue with non-

controlled scenarios is that students could compile some questions for an answer. Also,

most programming assessment systems reviewed only allow the assessment of skills

through code and lack other methods.

Mark distribution varies between systems. BOSS suggests the mark to be given to

assignments for different criteria, with humans able to adjust and finalize the final mark.

Ceilidh uses a configuration file, with different criteria assigned a weight. It also has

the ability to scale marks, for metrics, using the technique established by Rees (1982)

, with marks scaled between four thresholds (in-order of value, low to high): lo, lotol,

hitol and hi. A metric value between the thresholds of lotol and hitol, typically the

lower-upper and upper-lower bounds of a metric’s value range, receive full marks. A

value between lo (the minimum value for the metric’s range) to lotol or hitol to hi (the

maximum value for the metric’s range) is scaled between full marks to zero marks. The

Reg: 6195601 5

CMPC3P2Y

idea behind this technique is to penalize code with e.g. too many or too few comments.

This technique is also used by ASSYST and Style++ (Jackson and Usher, 1997; Ala-

Mutka et al., 2004). PASS and Online Judge do not go into detail about how marks

are rewarded. CourseMarker requires a separate Java library to be programmed and

dynamically loaded at runtime for each exercise, which instructs the system on marking.

Architecture is possibly another concern due to the potential for a high volume of

work, with CourseMarker having being used to mark more than 3,000 assignments per

week at the National University in Singapore (Higgins et al., 2003). It uses an architec-

ture where different parts of the system are split-up into virtual servers; these servers

can use Java RMI (Remote Method Invocation) for communication, allowing them to

be physically segmented across a network on different machines. A web client can be

used to perform administration tasks, such as the creation of exercises, and a Java Swing

(GUI (Graphical User Interface) library) client is used by students to submit work and

for teachers to monitor student progress – which also uses RMI for communication. A

remote server tool also allows debugging, statistics and control of the virtual servers.

These servers consisted of: submission for handling the submission of work and invok-

ing other servers, course for managing course materials, Ceilidh for course information

and login for student authentication. The code of the servers has to be modified and

recompiled if the system requires a new external tool/process to mark work; this also

requires the system to be restarted.

Its predecessor, Ceilidh, used a monolithic architecture running within a single pro-

cess (Benford et al., 1995); this process would invoke external tools as separate pro-

cesses to mark work. Higgins et al. (2003) state that Ceilidh was also hard to configure

and its text-based interface was difficult to use, even though they also state a web in-

terface was later created; something which CourseMarker did not have. It is not clear

if the web interface was only accessible on the same local machine, as was the Ceilidh

process, and if the database layer (Higgins et al., 2003) was networked.

BOSS is similar to CourseMarker, with segmented virtual servers and a Java Swing

client for students (Joy et al., 2005) using RMI with Secure Sockets Layer (SSL) secu-

rity. The virtual servers (separate processes) include: an automated test server, student

server (for authentication, submission of assignments and logging), staff server (for

Reg: 6195601 6

CMPC3P2Y

marking, moderation and testing), Sherlock (a plagiarism detector) and a secure web

server (an alternative to the Java client). Since BOSS and CourseMarker use Java, they

are also cross-platform and able to operate on Windows and UNIX.

ASSYST is similar to Ceilidh, and also restricted to UNIX; however, students in-

teract with the system using a GUI (Jackson and Usher, 1997). Style++ runs as an

independent UNIX tool, outputting the analysis of a file to console (Ala-Mutka et al.,

2004). Online Judge runs as a process on a UNIX server, opening-up a port to re-

ceive submissions sent using a wrapper program; information about the system can be

viewed using a web interface, which uses CGI scripts (Cheang et al., 2003). QuizPack’s

platform support is not discussed, but students interact with the system through a web-

interface (Brusilovsky and Sosnovsky, 2005). PASS is similar to Style++ in architec-

ture, but restricted to Windows computers using IBM-PC machines; the type of interface

(command-line or graphical) is not specified (Thorburn and Rowe, 1997). SchemeRobo

is quite different from any other system, with students interacting with the system using

e-mail. New exercises are sent by e-mail, with students sending their work back and

receiving feedback automatically. The platform of the server is not stated (Saikkonen

et al., 2001).

A part of authenticity is determining the identity of a user, such as a student or teacher,

through authentication. Most systems have an isolated list of usernames and passwords

with user-groups or permissions. However, CourseMarker offers an alternate option, for

students, by using a POP3 mail server (Higgins et al., 2003).

Hollingsworth (1960) discussed a limitation, whereby student programs could modify

the assessment system. This issue has been resolved in systems such as Ceilidh and

CourseMarker (Higgins et al., 2003) by performing white box feature checking and

executing student programs under an account with limited permissions.

Users, besides using malicious code, can abuse a system by brute forcing a solution or

using the system as a compiler; this was noticed by Benford et al. (1995) with Ceilidh,

where students changed their code to see how their marks would change, and Cheang

et al. (2003) with Online Judge. The system, Online Judge, used a queue for processing

assignments based on first in, first out (FIFO) priority. This resulted in students poorly

checking their programs and even writing programs to flood the queue – inflicting a

Reg: 6195601 7

CMPC3P2Y

denial of service attack. Their solution was to limit the number of resubmissions and to

only allow one item in the queue, per user, at one time. Most systems, like SchemeR-

obo (Saikkonen et al., 2001), also enforce an execution time-limit; this protects against

malicious or buggy programs from indefinitely running.

Benford et al. (1995) also discuss the benefits of administration duties, with the abil-

ity for their system to inform teachers of students not submitting work and collect 160

paper reports on a given date without the need for physical boxes and manual process-

ing, eliminating the possibility of lost work and significantly speeding up the process.

BOSS also allows teachers to attach feedback to submitted work, with a minimal num-

ber of keystrokes for marking by automatically filling out marks from automated tests

(Joy et al., 2005). Higgins et al. (2005) also mention using a modified Java compiler,

which aggregated compilation errors. The most common errors would then be used to

change lecture and exercise material.

2.1. Evaluation

This section evaluates the literature review, on existing work, by looking at the prob-

lems, techniques, features and areas for improvement, and what they mean for the

project.

There is an evident need for automated assessment systems and tools, primarily due

to a high number of students enrolling – although it is possible this factor has or could

change. However, automated assessment has other motives: requires less resources,

provides feedback faster (and instant in some cases), less error prone and a reduction of

administrative duties.

Some systems and tools such as SchemeRobo and CourseMarker allow entirely auto-

mated marking with instant feedback, whereas BOSS provides the storage of assign-

ments, automated processing of work and tests and finalized marks from teachers.

Style++ and ASSYST assist with manual marking by automatically assessing assign-

ments and providing an analysis and spotting issues. This raises the question: how

automated should a new system be? This would appear to be based on the usage of an

assessment system in terms of formative/summative assessments and self-learning exer-

cises; thus PALS should be open to allowing a mix of automated and manual marking.

Reg: 6195601 8

CMPC3P2Y

Something such as false negatives, as with Style++, would not be as much of an issue

during formative, as opposed to summative, assessments.

The methodology for assessing programming skills should also be open, with many

systems assessing just code alone. A student may be able to produce code, perhaps

through trial and error as seen by Cheang et al. (2003), but they may not entirely un-

derstand what they are doing. QuizPack is a solution, but it does not allow for other

methods of assessment and it is open to being cheated by compiling parametrized code.

Joy et al. (2005) mention questions are suitable for testing comprehension and knowl-

edge, but not enough for testing skills alone. Therefore, PALS should assess students

through both questions and code.

Testing code should use white box and black box testing with typographic analysis.

Black box testing is important to ensure a program has code correctness, meeting its

specification. However, using a subset of random values from a range of possible values

for numeric inputs, as used by PASS, is not sufficient because there is the possibility

for an incorrect output. This could result in an incorrect program receiving marks.

Therefore, PALS should, where possible, test all of the possible inputs or use both

random values and human-provided cases where errors are likely to occur; with test

inputs defined by a human, when creating exercises.

Measuring the execution time of a program to evaluate efficiency (as seen with AS-

SYST), should be avoided. Different systems could have different execution times and

the operating system’s process scheduling may interfere. A time restriction will need to

be added to stop buggy or malicious programs from indefinitely running, as mentioned

with SchemeRobo.

Black box testing also presents many security issues, especially when looking at flaws

in previous systems. A previous version of CourseMarker compiled student programs

on client machines (Higgins et al., 2003, 2005), which seems dangerous because the

compiler on the client machine may be compromised. Thus the program sent from the

client may consist of different, and possibly malicious, code. If the server executes the

program with incorrect privilege restrictions, the entire system could become compro-

mised. The platform/architecture of the client and server may also be incompatible with

the compiled program, and unable to execute on the server. Therefore, compiling should

Reg: 6195601 9

CMPC3P2Y

completely take place on the server.

With code being compiled on the server, it could also undergo white box testing

before dynamic analysis, or any form of executing code, for security. SchemeRobo

allows for the blacklisting of keywords. Therefore, a new system could expand this

feature by implementing white (allowed) and black (disallowed) listing for constructs

and libraries. Since students can also upload assignments, unnecessary files should also

be removed – something which has not been mentioned.

PASS also discovered an issue whereby students could define functions and never call

them, but write the code within their program’s entry-point function. Therefore, if static

analysis checked for the function and dynamic analysis produced the correct output, the

student’s program would be correct. Thus feature checking should also check a function

is invoked or a class has been used. This limitation of PASS has not been mentioned

elsewhere in literature and may be an issue in assessment systems with feature checking

such as CourseMarker.

As found with Online Judge, it should be possible to place a limit on resubmissions to

avoid students brute forcing solutions. To avoid flooding the queue, it should be made

mandatory for only one of each assignment/exercise per student to be in the marking

queue at one time. Online Judge restricts one submission per student instead. How-

ever, a student may want to move onto the next exercise; therefore, using this type of

restriction could impede a student from working.

Jackson and Usher (1997) acknowledges the criticisms of McCabes complexity met-

ric, implementing it in ASSYST to measure complexity because of being well-known

and easy to automate; a future system may implement the metric, but it should be op-

tional since it could be irrelevant – this could be the same for all metrics. Therefore,

when creating exercises with PALS, the specific metrics used on code should be speci-

fied.

The new system should also use a web interface as a client for interfacing with the

system, for both teachers and students, and Java for the server-side. BOSS uses both

a web interface and client. However, this seems pointless because additional features

would require two separate projects to be extended – which is wasted effort. A web

interface is more suitable because it does not require a client to be installed and future

Reg: 6195601 10

CMPC3P2Y

updates deployed. The serverside should use Java because it supports multiple plat-

forms; it would also allow any code to be migrated between PALS, CourseMarker or

BOSS.

Java also allows for dynamic loading at runtime of external libraries, as seen with

CourseMarker for dynamically loading marking programs. A similar approach could be

used for reloading certain functions of the system, a limitation discussed by (Higgins

et al., 2003) where CourseMarker had to be restarted. This would also allow a system

to load functions required for marking new languages, overcoming the limitation seen

in Style++ and SchemeRobo of supporting only a single language. Different functions

could also exist for allowing different ways of authenticating users. Therefore, institu-

tions could integrate PALS into existing infrastructure, without the need for an isolated

list – which could otherwise become inconsistent.

These functions could also be separated across physical machines, as seen with BOSS

and CourseMarker; this would allow the system to continue functioning in the event a

function failed. Support for clustering could also be added, which has been stated by

Higgins et al. (2003) as being possible in CourseMarker (although the authors do not

make a distinction between the feature being implemented or simply possible as a future

extension). Using RMI, as used with BOSS and CourseMarker, may be unsuitable; a

defined protocol would allow platforms, unable to use RMI, interface with the system.

Marking should also not require an external library to be dynamically loaded by the

system. This would require a lecturer to create a mark program/library for each exercise,

which could take a lot of time. A simpler option would be to evolve the idea of using a

configuration file, as seen in some of the systems and tools reviewed such as ASSYST

and Style++. Feedback from marking also needs to be appropriate; too much can have

a negative effect on learning, as mentioned, and too little could be insufficient for a

student to self-learn. The level or type of feedback provided could also be set when

configuring an exercise. The collection of errors would most likely be useful as feedback

for teachers; rather than use a modified Java compiler, errors could be parsed from

compilers using standard-output.

CourseMarker, and its predecessor Ceilidh, have been referenced by a lot of literature

(Joy et al., 2005; Jackson and Usher, 1997; Ala-Mutka et al., 2004; Brusilovsky and

Reg: 6195601 11

CMPC3P2Y

Sosnovsky, 2005; Saikkonen et al., 2001; Thorburn and Rowe, 1997). Therefore, an

observation can be made that it is one of the most important automated assessment

systems in this area; and yet their system has disappeared. It was also found that a lot

of the other systems and tools mentioned no longer exist, or are no longer developed,

with the exception of BOSS; this was also found by Ihantola et al. (2010a). They also

mention that a lot of systems share common features, as we have seen, but many systems

are written for specific courses, not suitable for distribution, or closed source due to

being licensed, as with CourseMarker (Higgins et al., 2003). A solution Ihantola et al.

(2010a) propose is for new systems to be made open source; this would allow a new

system to be continually developed by people besides the original authors. It would

also allow new features to be added, which may have not been originally considered.

Therefore, PALS should be made open source at the end of this project.

3. Project Planning

3.1. Requirements Analysis

MoSCoW was used to determine the scope and priority of work to be implemented and

excluded, which is also useful for assessing the success of the project and to clearly

define a schedule of work to be completed.

Must have:

• Ability to create and manage: users, assignments and questions; without the need

for external libraries to be created.
• Ability to assess code using dynamic and static analysis.
• Security for dynamic analysis, to restrict malicious or accidental damaging or/and

disruptive behaviour.
• Code compilation taking place on the server-side.
• FIFO processing of assignments with limits on resubmissions to avoid brute-

forcing and indefinite postponement.

Should have:

• A web interface for accessing the system.

Reg: 6195601 12

CMPC3P2Y

• Assessment able to be automatic or/and manual.
• Multiple methods of assessment, besides just code.
• Assignments and users organized into modules.
• Inputs, used to test code, defined by a human.
• Appropriate feedback from automated assessment.
• A cross-platform system.

Could have:

• A system able to be extended with multiple languages.
• Ability to test code with random inputs.
• A system capable of being segmented or distributed across multiple nodes.
• Checking of methods being invoked to fix the issue mentioned by PASS.
• Uploading of student projects, with removal of unnecessary uploaded files.
• Assignment deadlines.
• Libraries reloaded during runtime.
• Collection of compiler errors for stats.
• Testing of both standard output and input.

Wont have:

• McCabe’s cyclomatic complexity metric.
• Multiple languages – a single language should be sufficient to demonstrate the

potential of the system.
• Testing of graphical user interfaces.

Use case diagrams and descriptions were also created, which can be found in the

appendix (section A).

3.2. Time Management

A GANTT chart was used to keep an overview of the time schedule for items, with a

to-do list to track sub-items. The to-do list was also useful for tracking bugs and for

logging some feedback from project advisor meetings. Refer to appendix for chart and

to-do items (section A).

Reg: 6195601 13

CMPC3P2Y

3.3. Software Engineering

The code base has an underlying framework/library called the base, which is used for

starting instances of nodes, and by plugins (explained later). The base was developed

with a software development cycle, which consisted of the following phases: analysis of

requirements, design, implementation and testing; these phases were repeated in multi-

ple short iterations. The code-base was initially continuously integrated with my virtual

private server (VPS) to store backups, which evolved to automated testing using JUnit

and Jenkins, running each time changes were committed. The unit tests would be ran on

my Windows machine, as well as the VPS, which was running Linux; therefore testing

was done on multiple platforms.

Design patterns have also been used to help reusability, with much of this paragraph

explained in the next section. A singleton pattern is used on NodeCore (pals.base), al-

lowing for instances of nodes to be created once during a runtime, to avoiding conflicting

classes from dynamic plugins. This same class also acts as a facade with sub-system

components, which can be added, developed and possibly removed over time. The

same class also acts as a factory for Connectors (pals.base.database), which uses the

template method pattern to allow custom wrappers for database connections. A factory,

SSL_Factory, is also used to create client/server SSL sockets for RMI. Template-hook

pattern is also used for plugins, which also uses the observer pattern for a hook mecha-

nism. The WebManager (pals.base) uses the chain-of-responsibility pattern for serving

web requests, where multiple plugins may be able to handle a request or page-not-found

request. ThreadPool (pals.base.utils) uses the thread-pool pattern. RMI_DefaultServer

uses the visitor pattern to allow remote operations on sub-components.

All code has been documented with Javadoc, which allows future developers to ex-

tend and support the system, and a class diagram has been created for the base. Both

can be found in the appendix (section A).

Since the system needed to be open-source, the MIT license was selected, under

which the code would be distributed. This allows for both commercial and non-commercial

usage, whilst forcing future distributions to retain the same license for the original code.

The aim is to give a body of work which can be either extended or used for a newer

system in the future, to avoid problems found by Ihantola et al. (2010b).

Reg: 6195601 14

CMPC3P2Y

4. Design and Implementation

4.1. Architecture

Figure 4.1: Diagram of a PALS system.

Unlike previous systems in the literature review, PALS can be distributed across multiple

host machines, as multiple processes. These instances, of processes, are referred to as

nodes (figure 4.1). This section discusses the design and implementation phases, by

looking at the architecture, plugins and administration of PALS.

4.1.1. RMI Communication

Each node communicates using RMI, as seen in literature with BOSS and Course-

Marker, which can use a custom socket factory to create SSL connections. When used,

this protects against man-in-the-middle attacks, on a network, between a node and web

server, since traffic is encrypted. This also prevents a student from maliciously invoking

available methods on a node. SSL private and public certificates are loaded from a Java

Key Store (JKS), which can be easily generated using keytool in the Java Development

Kit (JDK).

Reg: 6195601 15

CMPC3P2Y

4.1.2. Storage

All of the nodes require a shared directory, such as Samba or a Windows file-share,

for sharing: temporary web uploads (uploaded files to a website are transferred here),

templates for rendering a web-page and assessment files – such as compiled byte-code

and test files.

4.1.3. Settings

Each node has a node.config XML file, with: database settings, the node’s universally

unique identifier (UUID) for identification, mail-server settings, path of the shared stor-

age, account credentials for sandboxing (discussed later) and embedded web-server set-

tings.

4.1.4. Core

Each node contains a core, called NodeCore, which uses a singleton pattern – so only a

single instance can be created. It is responsible for starting and stopping a node, as well

as acting as a facade between system components and plugins.

4.1.5. Website

The website (figure 4.1) only serializes web requests, which are delivered to a node

using RMI, for processing and rendering; this means their traditional role of handling

an entire request is not the case with PALS. This is because PALS allows the system to

be extended with plugins (discussed later), which allows plugins to handle requests and

remain within, and have access to, a node environment. This also avoids issues with the

web application pool stopping after a period of inactivity and plugins being loaded at

both the website and node ends.

Reg: 6195601 16

CMPC3P2Y

Figure 4.2: A URL tree for storing relative paths handled by plugins.

When a plugin is loaded during runtime, it registers the relative paths of uniform

resource locators (URL) it handles, with a component called the web manager. These

paths are split-up by each directory and placed inside a data structure called a URL

tree (figure 4.2), where each node from the root forms the full relative path, allowing

multiple plugins to handle different sub-directories of a path. When a web request is

received, the tree is searched and the plugins at the deepest levels of the tree are invoked,

until the request is served – else a 404 event occurs. If the bottom-most directory of a

relative URL is not present in the tree, the plugins of the parent nodes are invoked; this

means each possible relative path does not need to be registered, only the roots, which

is useful for dynamic paths.

Another component called the template manager is used for rendering content, using

an open-source library called FreeMarker. A custom handler can then load templates

from shared storage and from the Java Archive’s (JAR) of plugins, which FreeMarker

caches. The benefits of this methodology, over traditional JSPs (JavaServer Pages),

is that rendering is used for both web and e-mail content, which can be extended for

anything else, and it can still feature dynamic content like JSPs. This also allows web-

content to be rendered on nodes, outside of a traditional web application environment.

4.1.6. Database

The database currently only supports PostgreSQL, which was initially chosen due to its

powerful PL/SQL. MySQL was also supported in the initial implementation. Due to

Reg: 6195601 17

CMPC3P2Y

a limited amount of time for testing, support has not been added back, but the system

could be extended in the future.

Session data is stored in the database (figure B.2), which allows multiple nodes to

process web-requests, with each session holding a row in pals_http_sessions; this table

contains a flag to indicate if the session is private and a timestamp of when the session

was last active. Each session can have serialized data stored under a key-name, which is

stored in pals_http_session_data, which is currently used for storing cross-site request

forgery (CSRF) and captcha strings, and the identifier of the user tied to the session.

This can be extended by plugins, by simply specifying a key and a serializable object.

The assessment part, of PALS, first starts with a pool of questions (pals_questions),

which derive from a type of question (pals_question_types). Each question can con-

sist of multiple criteria (pals_question_criteria), which each derive from a criteria-

type (pals_criteria_type). Questions can then be included in multiple assignments

(pals_assignments), multiple times (pals_assignment_questions). Each assignment be-

longs to a module (pals_modules), where each can have multiple users enrolled

(pals_modules_enrollment).

When a user takes an assignment, an instance is created (pals_assignment_instance),

which allows an assignment to be taken multiple times. Each question is processed and

rendered by a plugin, which is determined by the question-type; the plugin can then

create an instance of the question for the instance of the assignment

(pals_assignment_instance_question), which can store serialized data – such as a user’s

answer.

On submission, an instance of a criteria (pals_assignment_instance_question_criteria)

is created for the instance of assignment, for each criteria in every question. These cri-

teria are then processed by the cluster of nodes, which each lock the pals_node_locking

table (as a semaphore) in ACCESS EXCLUSIVE mode, to avoid repeating similar work,

and fetch unmarked instances of criterias.

Once all of the instance of criterias have been processed and marked by plugins, on

nodes, the mark for each instance of an assignment question is computed (formula A in

figure 4.3). Each criteria can have different weights (criteria weight), and assignment

questions themselves can have different weights (question weight). These weights allow

Reg: 6195601 18

CMPC3P2Y

more marks to be allocated towards more important criterias and questions. Once the

mark has been computed for each assignment question, the overall mark for the instance

of assignment is computed (formula B in figure 4.3).

question mark =

[
∑[criteria mark · criteria weight]

∑criteria weight

]
(a) For an instance of an assignment question.

mark =

[
∑[question mark ·question weight]

∑question weight

]
(b) For an instance of an assignment.

Figure 4.3: Computing grades for assignments.

4.1.7. Plugins

Plugins allow PALS to be extended dynamically, without the entire code base requir-

ing recompiling each time a modification is required. Plugins can also be loaded and

unloaded during runtime, meaning an instance of PALS does not need to restart for

changes to the runtime to occur, unless changes are required to the base; this is handled

by a component inside the core called the plugin manager. Plugins are also reloaded,

automatically, when the main Java Archive (JAR) file is modified, and unloaded when

deleted.

Plugins are distributed as a JAR file, which have to be placed in a directory specified in

a node’s configuration file. They also have their own configuration file, which specifies:

• UUID – a universally unique identifier (UUID) is used for identifying a plugin.

Rather than give an auto-incrementing identifier from a database, plugins have

a unique identifier so they can specify the UUIDs of the other plugins they are

dependent upon – which can be optionally defined in this configuration file. Since

a UUID is 16 bytes (2128 combinations), a collision is unlikely due to a very high

amount of entropy.
• Versioning - the major, minor and build version information. This is checked

against the database to ensure all nodes are running the correct version of the

Reg: 6195601 19

CMPC3P2Y

plugin.
• Class-path – each plugin contains a class, which extends a class in the base called

Plugin. This class must implement abstract methods to handle the loading, install

and uninstall events of a plugin – these are invoked by the plugin manager.

Plugins can also override methods to: handle web-requests, handle hooks, register

URLs with the web manager (which invokes the plugin when the URLs are requested),

register hooks, register templates with the template manager and much more. In the

event the web manager or template manager fail, they can invoke all of the plugins to

re-register URLs or templates.

4.1.8. Hooks

Registering and handling hooks is an event mechanism, where plugins subscribe to an

event by a name, through the plugin manager. Other plugins can invoke an event by a

name, with registered plugins invoked to handle the hook. The name can be anything a

programmer desires.

Hooks can also be invoked through RMI, over the network; this is useful for threads,

of plugins, which need to poll the database for work. Rather than threads polling the

database periodically, this methodology allows threads to efficiently sleep until work

is due. This is currently used for sending e-mails, marking assignments and cleaning

session data.

4.2. Plugins

4.2.1. Assignment Marker

This plugin is responsible for marking and computing the overall marks of instances

of: criteria, assignment questions and assignments; based on first-in, first-out queueing.

When loaded into PALS, it creates a thread for fetching work, instance of criterias (IAC)

to be marked, which are then placed into a queue. It then creates a thread pool of

workers, which block on the queue, until an IAC is available. This is then processed

and marked. Since each IAC belongs to a criteria, which belongs to a criteria-type, the

Reg: 6195601 20

CMPC3P2Y

plugin which owns the criteria-type is invoked, through the hook mechanism, to mark

the work. The instance of assignment (IA), of the IAC, is then placed into a buffer. The

main thread checks the IAs in the buffer to see if all the IACs have been marked; if this

is true, the overall grade for the instances of questions and IA is computed, as discussed

in section 4.1.6.

If an IAC is unable to be marked, it is set to a manual marking state, where a lecturer

has to mark it or set the IAC to be reprocessed automatically. This is a fallback method

in case a plugin encounters an exception, since a student should not receive zero marks

when the system is at fault. If a plugin is not available on the node, to mark the instance

of criteria, a timestamp is set, with the instance of criteria not marked for a configured

(plugin settings) timeout period. As mentioned, in section 4.1.6, a table is locked when

retrieving instances of criteria, as a semaphore.

4.2.2. Default Auth

The default authentication manager for PALS, which uses the pals_users table (figure

B.2) for storing login information. This is a separate plugin to allow an alternate authen-

tication manager to be used in the future. This is also responsible for the web interfaces

for logging in and out, resetting an account’s password by e-mail, updating an account’s

settings and the management of users and user groups.

4.2.3. Miscellaneous

• Assignments – responsible for the web interface for manual marking, taking in-

stances of assignments and viewing instances of assignments (as a lecturer or

student). This plugin uses the question and criteria types, which point to plug-

ins responsible for them, for rendering both questions and marking feedback for

criterias – using the hook-mechanism.
• Captcha – used for human verification, discussed in section 4.5.
• Default Question Criteria Handlers – provides the default question and criteria

types, for this project, which includes the web interfaces to edit and render them,

as well as marking criteria types.

Reg: 6195601 21

CMPC3P2Y

• E-mail – e-mail is persisted into a table in the database, which is sent by this

plugin. This allows e-mails to be sent by a different thread during web requests,

which could otherwise cause a time out. It also allows for e-mails to be reat-

tempted, after failing to be sent, and for other nodes to send e-mails. Persisting

the data also carries it across reboots.
• Example – an example plugin which demonstrates how to implement 404 pages;

it is also responsible for displaying web pages with static content, such as the

home-page.
• Jetty – runs an embedded instance of the Jetty (Eclipse Foundation) web server,

which avoids having to setup a web server. It also allows for PALS to be portable.
• Modules – responsible for the web interfaces for displaying and managing mod-

ules.
• Node Active – updates the database periodically to state the node is still alive.

This is important for retrieving and caching a list of RMI nodes for remote invo-

cations, such as waking up threads on other nodes.
• Questions – responsible for the web interfaces for modifying questions.
• Runtime Plugin Reloader – creates a file monitor on the plugins directory and

loads/unloads plugins.
• Session Cleaner – removes old data from the system. This checks for expired

session in the database, as well as file uploads. It also removes old data from

deleted instances of assignments, which is registered in the table pals_cleanup

(figure B.2).
• Stats – responsible for logging exceptions from compilation and dynamic analy-

sis, for code questions. This also provides web interfaces for reviewing the data.

Refer to section 4.4.5.

4.3. Applications

4.3.1. Java Sandbox

Student’s, and possibly question or criteria, code is compiled by PALS into class-files.

When the code needs to be executed, PALS launches a new JVM (Java Virtual Machine),

as a separate process, of the Java Sandbox – an application for securely executing Java

Reg: 6195601 22

CMPC3P2Y

within a restricted environment, often referred to as sandboxing. It is launched with

arguments specifying: a white-list of allowed classes, the path of the class files, the

fully-qualified entry-point class name and method and method parameter types – only

primitives are currently supported as parameters, which also allows arrays.

A custom SecurityManager (Java API) implementation is first applied to the Java

Virtual Machine (JVM), which is used to restrict certain features of Java, by throwing

a SecurityException for restricted features. At present, file I/O is restricted to the same

directory as the class files and all other major features, such as sockets, which could be

used to communicate with the node’s physical machine (a security risk), are disallowed.

A custom implementation of a URLClassLoader is then used to locate the entry-

point class and method , which is then used to load required class files, and any classes

required by the class files. If a white list, of allowed classes, has been specified, any

class not listed will result in a custom exception being thrown, which PALS can then

use to inform a student that their code uses a restricted class.

A thread is next launched, just before the entry-point method is invoked, which kills

the sandbox after a time period, to protect against indefinite or long periods of execution.

PALS also does something similar, where a marking/worker thread waits for the process

to exit before a time period, or forcibly kills the process. The timeout thread, in the Java

Sandbox, acts as a fail-safe in the event PALS is prematurely terminated or unable to

stop the sandbox.

A problem was also experienced with the Java Sandbox, where, on occasion, no data

would be written to standard output. To resolve this issue, the Java Sandbox outputs the

line javasandbox-end-of-program and waits for a character to be written, to standard

input, before terminating.

4.3.2. Windows User Tool

PALS also launches processes, such as this sandbox, under another user, for additional

security, using a process wrapper called PalsProcess in the base library. On Windows,

another application had to be created, called WindowsUserTool, which uses the Mi-

crosoft .NET Framework to launch a new process under new credentials, which then

forwards any standard input, output and error data between PALS and the new process.

Reg: 6195601 23

CMPC3P2Y

This overcame the problem of using the Windows runas tool, which required credentials

to be manually entered and saved, as seen with CourseMarker.

The credentials may be insecurely stored, but this does not matter, since any student

code will execute under a new user, which should be restricted from reading any PALS

configuration files, with the Java Sandbox able to also restrict I/O. This trade-off allows

for a quicker, less manual, setup of new nodes.

With Linux, the process is executed over SSH on localhost, to change the user of the

process. However, the working directory could not be changed. This was overcome by

having the sandbox check the working directory is the same as the class files path, or the

sandbox creates an identical process of its self, but with the correct working directory.

4.3.3. Node

The Node is a simple application, which uses the base library to fetch, or otherwise

create (singleton pattern – mentioned in section 4.1.4), an instance of a NodeCore. The

method start is then invoked to start a new instance of a fully-functioning node. This

means another, pre-existing, application could include the base library and, with very

few lines of code and little effort, integrate with PALS.

4.4. Administration

Web pages for administration are handled between multiple plugins, meaning a future

plugin could implement its own administration section(s). In this section, the individual

parts of the administration system are discussed.

4.4.1. Questions

A pool of questions is shared between all the assignments of modules (4.1.6), which

allows questions to be created, modified and deleted without involving any configuration

files. Creating a question is as simple as specifying a title, a description (optional) and

selecting the question type (section 5.1). Next, the user is presented with a page to edit

the question. The user then goes to the question overview to manage the criterias, which

can be combined, and weighted, to form the overall mark for the question. Adding a

Reg: 6195601 24

CMPC3P2Y

new criteria is similar to creating a question, where the user enters a title, weight and

selects the type of criteria (section 5.2); the user is then presented with a page to edit the

criteria. Since many questions can exist in the system, the questions overview page has

a filter for question title, with each question able to have a description.

4.4.2. Modules & Assignments

Modules are used to create groups of users assigned to assignments. The user is able to

create, modify, delete assignments; view active assignments, view and print off overall

marks for students, view attempts by students and manage enrolment.

Creating an assignment requires a title, weight and the number of maximum attempts.

Maximum attempts can be -1 for unlimited retries, which also allows students to reopen

an assignment after submission, with the same answers submitted. A due date can also

be optionally set, with the assignments marker plugin auto-submitting active assign-

ments, once surpassed. Assignments are also weighted, which is used to compute the

overall module mark for an enrolled student. The user is then presented with a page

to add, change the page and order of questions. This means multiple questions can be

presented on a page, with multiple pages to divide up different sets of questions. Marks

for an assignment can also be viewed, printed and downloaded as a comma-separated

values (CSV) file; for an assignment with multiple attempts, the highest mark is used.

The user is also able to view an attempt, by a student, and modify the marks for

questions, reprocess the criteria for automated marking, recompute the overall grade

and reopen the attempt (with the same answers submitted).

4.4.3. Users and Groups

Users can be created, modified and deleted. Each user belongs to a user group, which

each specify the permissions granted to the belonging users. These permissions include:

• Login – a group can be disabled from logging-in; useful for retaining data, of old

users.
• General Marking – allows the user to perform manual marking; useful for teach-

ing/marking assistants of a module.

Reg: 6195601 25

CMPC3P2Y

• Modules, Questions, Users, System – allows access to specified elements of ad-

ministration. Users should only require the specific access they require to perform

their role. Example: it makes no sense allowing module organizers to modify

user-accounts, since the area of attack, i.e. a lecturer’s account becoming com-

promised, is wider.

4.4.4. Mass-Enrolment

Users can be added, enrolled, disenrolled and removed from the system and modules

en masse using CSV and tab-separated files. The same formats are also supported for

downloading users belonging to either the system, a user-group or a module. This is

useful for sharing information between third-party information systems.

4.4.5. Stats

Figure 4.4: Stats Overview with Runtime Errors in Yellow and Compilation Errors in

Red.

Compilation and run-time errors are collected, which is useful feedback for lecturers on

areas where students may be encountering issues. Errors can be viewed by type in an

overview (figure 4.4), or filtered by: question, module or assignment – by visiting the

overview of the respective items. The user can also view individual exceptions, along

with their messages and the instance of the assignment of where the error occurred.

Hints can also be added to exceptions, which are shown as feedback after submission of

an assignment (figure 4.5).

Reg: 6195601 26

CMPC3P2Y

Figure 4.5: An Example of an Exception Hint from the Stats System.

4.4.6. System

All, and individual, nodes can be rebooted and shut down, useful for general mainte-

nance on a cluster. The e-mail queue can also be viewed, which could serve as a useful

diagnostic for a system encountering problems. Plugins can also be uninstalled, deleted

and unloaded from all nodes; the same page also displays the state and information of

plugins, useful for diagnostics.

4.5. Security

The system uses security guidelines set by OWASP, a free and open software security

community. Even though it is not an academic resource, it has been praised by academia:

OWASP contributed significantly in developing a secured Web application (Sedek et al.,

2009). Since this system is handling sensitive data, such as grades, it is crucial to protect

against malicious activity. PALS has protection against/for:

• XSS: cross-site scripting (XSS) attacks, where users inject malicious content into

web-pages; this is avoided using HTML escaping for user input.
• CSRF: cross-site request forgery (CSRF), where requests are made without the

user’s knowledge. This is usually by embedding a malicious URL, to commit an

action, in an image or running a script to make requests on a third-party web-

page. This is avoided by asking users to confirm actions and adding a randomly-

generated 32-character alpha-numeric phrase into HTML forms, which is saved

on the server-side in the user’s session data.

Reg: 6195601 27

CMPC3P2Y

• Session management: each user session has an identifier, stored in a web-browser

as a cookie, which is tied to an IP address. Each identifier is generated by using the

SHA-256 algorithm to hash 512 pseudo-randomly generated bytes. The random

number generator (RNG) seed is based on the current date and time, as well as

a random number from another time-seeded RNG, created when the node starts.

Since PALS is being used within a school environment, multiple users could be

tied to a single IP. Therefore, hashing prevents brute forcing and determining new

session identifiers. Sessions can also be set to private or public when logging in,

which expire after 60 or 10 minutes of inactivity.
• Passwords: the default authentication plugin irreversibly hashes user passwords

with SHA-512, using a unique 32-alpha-numeric salt for each password. Salting

further protects against rainbow table attacks to guess passwords, in the event

such data was leaked.
• SQL injections: all query inputs are parametrized, which are then sanitized by

the connection provider/library.
• Automated attacks: captcha verification is used on high-value pages, such as

logging-in and deleting modules. Bots can get around randomly-generated verifi-

cation techniques, such as CSRF, by scraping for text data. Instead, this renders

alpha-numeric text, surrounded by noise, in an image, which the user has to enter.

5. Design and Implementation – Assessment

This section is a continuation of the previous section, but with more detail regarding the

assessment part of the system.

Question and criteria types, as previously mentioned, are used to form questions,

which can be added to assignments. These types are handled by plugins, so they can

be replaced and extended over-time. They both use UUIDs as identifiers; this is partly

for plugins to interact, but also for plugins to be deleted and old data retained. Even

though old data, in the event of a plugin being uninstalled, would fail to be rendered and

generate error messages, it could prevent the loss of data from human error.

Reg: 6195601 28

CMPC3P2Y

5.1. Question Types

Question types are responsible for capturing and displaying different types of languages.

If a language was to be supported in the future, it would be supported through a new

question type.

Written text was one of the first types implemented, which simply takes user input.

This type is aimed at essay writing, which would be manually marked.

Multiple choice/response allows a set of possible answers to be specified, with the

option to allow, or disallow, multiple answers to be selected. When the options are

presented to the user, the order is picked randomly and persisted for the instance of the

question. The intention is to make memorizing the order of answers, for assignments

with multiple attempts, more difficult.

5.1.1. Code Java

The type Code Java is the primary reason for the system, which allows the assessment

of Java code. Code can be provided in two different ways. The first allows for stu-

dents to provide a single class, which uses a third-party library, Code Mirror, for syntax

highlighting. This requires JavaScript to run on the browser, however, normal textbox

capture is available as a fallback. The second allows for files to be uploaded, includ-

ing ZIP archives, which are then extracted. Any previously-compiled class objects are

ignored as a security precaution, since the compiled objects may not be from the same

code.

A white list, of allowed classes, can be specified, which is used to restrict the classes

allowed during dynamic analysis/execution of code. A skeleton can also be specified,

which the student can use as a base for answering the question.

Questions can also be provided a set of files, which are merged into the temporary

directories of instances of questions. This allows hidden code to be added to questions,

which can be tested in order to perform tests of its own. It may be useful in a scenario

where students write classes for a skeleton, in order to solve a problem, such as manag-

ing a collection of data-types or sorting an array. If a file already exists in the instance

of a question, it is replaced with the file for the question. This prevents tampering with

provided files, which also prevents accident modifications and cheating.

Reg: 6195601 29

CMPC3P2Y

Compilation of code currently uses the javax.tools library of the Java library, which

allows for compilation errors to be retrieved and used by the stats part of PALS. Com-

piling code in memory was initially tested, but this presented many issues. The first

issue was security.

The fields in and out in the System class are required for printing to standard input

and output. The same class also contains a method for exiting the current runtime,

which could shut down a node. Therefore, this class could not be disallowed, but the

exit method can be restricted by a SecurityManager (mentioned in section 4.3.1), but it

makes shutting down a node difficult, which would require an overcomplicated mecha-

nism.

Also, since only a single instance of a node can be created, due to a singleton pattern,

student code could actually fetch an instance of the current core and, without restriction,

modify the system. Another major issue was efficiency. Since multiple nodes can mark

criteria, the code would have to be compiled on each node. The solution to all of these

problems was to compile the code to the shared storage, with the code executed within

the Java Sandbox as a separate process, isolated from the runtime of the node.

5.2. Criteria Types

The criteria types are used to mark the captured input from questions; they can also

serve multiple question-types and can be in separate plugins. This means a new plugin

could be created to mark a code question-type differently.

5.2.1. Matching

The first two criterias created allow for text to be matched using plain text or regular

expressions, which support every question type.

Regular expressions are useful for matching phases in text responses. If a match

occurs, full marks are rewarded; the inverse can also occur, where if no match occurs,

full marks are also rewarded. This could also be useful for providing marks for the

usage, or lack of usage, of certain control flow statements.

Another matching type was added for multiple choice/response questions, where if

Reg: 6195601 30

CMPC3P2Y

the correct answers are selected, full marks are awarded.

5.2.2. Java – Code Metrics

This criteria uses the lo, lotol, hitol and hi thresholds previously mentioned (section 2),

which can be applied to a literal or ratio (between 0 to 1) number. This supports the

static analysis of lines of code, blank lines, comment lines and average identifier length

(classes, methods or fields).

5.2.3. Java – Testing Inputs

This type performs dynamic analysis on static methods, through the Java Sandbox,

which supports the passing of primitive parameters and return types. The criteria first

requires the entry-point, which is the full class name and method name. Next, it requires

input/parameter types, separated by commas and in the same order as the parameters of

the method. Then the input is specified, with a different set of parameter values on

each line. These values are separated by semi-colons for each parameter, with multiple

values, for arrays, separated by commas.

Then a piece of test code is specified, which must contain the method located at the

entry-point. Since this criteria is used with code questions, it attempts to fetch the entry-

point method and class of student code, using reflection. If they exist, the student’s code

is invoked with each set of values, the test code is also invoked with the same values,

with the output compared. If both outputs match, the answer is correct. The overall

mark for the question is then computed based on the number of tests correct over the

total number of tests.

Reg: 6195601 31

CMPC3P2Y

Figure 5.1: Example Feedback for Testing Inputs Criteria

Once marked, the student is shown a table with the expected output, unless the solu-

tion is set to be hidden, and the output produced from their method (figure 5.1). One

drawback could be that only static methods can be tested, but this is not true, since hid-

den code, as previously mentioned, could be invoked to create instances of objects and

produce output based on the results.

5.2.4. Java – Testing Standard Input and Output

This type performs dynamic analysis in a similar way to Testing Inputs, where it requires

an entry-point full class name and method. However, it only supports a single test and

requires arguments, instead of inputs. These arguments consist of each parameter, in-

order, on each line, with the data type name and value separated by an equals symbol.

This also only supports primitives, including arrays.

Instead of test code, an input/output script is specified. Each line starts with either in,

for standard input, or out, for standard output. This is preceeded by an equals symbol,

along with the text data to either be matched on standard output or to be written on

standard input. The student’s code is then executed and the script is followed. This is

useful for exercises requiring the student to read, validate and sanitize real input data

for real-world scenarios.

Reg: 6195601 32

CMPC3P2Y

Figure 5.2: Example Feedback for Testing Standard Input and Output Criteria

Feedback at the end shows the script, unless the solution is set to be hidden, with

the output of the student’s program, indicating which lines are correct/incorrect (figure

5.2). Since the output is logged and the program could execute for a few seconds,

an indefinite loop could produce a huge amount of garbage. This could be due to an

accidental mistake, or malicious intent to cause harm to the system, by using excessive

resources. Therefore, an error threshold is specified, which is the maximum number of

incorrect/differing lines of output, before the program is terminated. Standard error can

also be merged with standard output.

5.2.5. Java – Testing Existence

A criteria type exists for checking the existence of either a method, class or field. This

can also be used to check the modifiers, with a different mark, as specified, awarded if

the modifiers are incorrect.

For a class, only the full class name needs to be specified. For a method, the full class

name is specified, along with the method name, parameter types and the return type –

with non-primitives and primitives both supported. Fields require the full class name of

where they reside, along with the type. Optionally, a generic type can be specified and

checked, which is useful in exercises involving data-structures such as ArrayList (Java

API).

Reg: 6195601 33

CMPC3P2Y

5.2.6. Java – Enum Constants

Checking the existence of an enum can be achieved through checking the existence of

a class, since an enum is considered a class in Java. However, it does not allow for

checking the defined constants specified.

This requires the full class name of where the enum resides, along with a list of names

of constants to be defined – with the options to ignore case and allow extra constants to

be defined. The overall mark is computed based on the number of constants over the

total number of constants required. If extra constants are not allowed, the total percent

of a single correct constant is deducted until the mark is zero. Therefore, if two correct

constants are defined and four are required, with two incorrect constants, the overall

mark would be zero.

5.2.7. Java – Inheritance & Interfaces

A powerful feature of modern programming languages, such as Java, is interfaces and

inheritance. This criteria allows for a class to be inspected, by providing a full class

name. If this class exists, it can be checked to see if it extends a class and/or implements

a set of interfaces. An optional field allows for an inherited class to use a generic type.

This is useful in exercises where a student has to write a class to extend a binary tree

node or the operations of a data-structure.

The mark computed can vary on the scenario. If only inheritance is being checked,

full marks are given if the target class exists and the class is correctly extending a spec-

ified class. If only interfaces are being checked, the mark is based on the interfaces,

required, implemented over the total number of interfaces required. If both the inter-

faces and inheritance are being checked, both are marked the same, but the overall mark

is split between the two areas. Therefore, if the extended class was correct but only half

of the required interfaces were implemented, the overall mark would be 75%.

5.2.8. Java – Custom Code

Hidden code, as previously mentioned, is useful for indicating certain outputs, but this

feature is made even more powerful by allowing code to perform its own marking and

Reg: 6195601 34

CMPC3P2Y

return a value between 0 to 100 as the mark for an instance of a criteria.

This works by the question having hidden code uploaded, which contains a method

with public static modifiers, an integer return type for the mark and no parameters. This

is then invoked to perform marking. Feedback can then be specified by outputting a

line to standard output, starting with either: error, warning or success; to indicate the

respective type of feedback message, with the message following after. Any standard

output starting without either of those keywords is logged as an info feedback message.

As seen with previous criteria, accidents or malicious intent could use the feedback

mechanism against the system. Therefore, a (feedback) message threshold is specified,

which once surpassed, the program is terminated.

6. Evaluation

This section evaluates the completion of the project, a comparison to previous systems

in the literature review, discusses problems encountered, throughput testing and finishes

on limitations and potential for future work.

6.1. Completion

The completion of the project has been determined by looking at the original require-

ments, as outlined by MoSCoW in project planning (section 3.1). All of the must have

and should have criterias have been fulfilled. Almost all of the could have criterias have

been fulfilled, with the exception of checking defined methods have been invoked. The

system’s base library has also been unit tested, with 96 tests, and documented for future

extensions. However, the code base is of a significant size, consisting of 24,883 lines of

code and 209 classes, which may present maintainability issues in the future.

6.2. Previous Systems

PALS provides a system capable of both automated and manual feedback. It features

static analysis, with metrics similar to those seen in Style++. And checking the exis-

tence, properties and values of structure of code, and dynamic analysis through testing

Reg: 6195601 35

CMPC3P2Y

inputs, as seen with PASS. As well as standard input/output, as seen with CourseMarker.

Security includes placing limits on resubmissions, as mentioned in Online Judge, but the

system also features sandboxing, something not seen during the literature review. Like

BOSS, and unlike CourseMarker, the RMI implementation has SSL encryption.

Compiler error collection, as seen with CourseMarker to assist lecturers, has also been

improved, by also collecting dynamic exceptions and allowing custom hints to be spec-

ified as feedback. The system has also been tested as a distributed system, rather than

a segmented system as with BOSS and CourseMarker, with up to eight nodes. Assess-

ment can also be in the form of small formative exercises, as seen with SchemeRobo,

and large summative assignments, with the option to place questions on different pages.

6.3. Problems Encountered

6.3.1. Java Sandbox

A modification was required to the Java Sandbox. Since the return value of an invoked

method (section 4.3.1) is outputted to standard output at the end, the user could output

their own value and terminate the environment. This could be used to spoof output, and

even possibly the mark with the Java custom code criteria.

The SecurityManager of the Java Sandbox will now catch the exit call and output a

message to indicate if the environment has been terminated, which appears as the last

message, instead of a potential spoofed line. This could be a general flaw with the

way PALS and the Java Sandbox communicate. Serialization, of the return type, was

considered as a fix, but nothing from the sandbox environment should be loaded into the

PALS environment, for security. Writing text output to a file was also considered, but

this could present concurrency issues, with multiple nodes, and such file writes could

potentially be spoofed too.

6.3.2. Assignment Marker

When testing a cluster of eight machines, the throughput of work marked became as

low as five per second, with the database becoming incredibly slow and eventually non-

responsive. A single node could mark around 10-15 instance of criteria (IAC) per sec-

Reg: 6195601 36

CMPC3P2Y

ond. The problem was due to the way worked was being fetched. Each node would have

eight worker threads, which would each lock a table to fetch and mark work, as well as

compute the overall mark of assignments and submit any due assignments. With eight

nodes, this means a total of 64 threads were created and locking a table. Each thread

would only pull a single criteria to be marked, resulting in a lot of overhead.

Something called the fetch-rate has been introduced, which is the amount of work

placed into a shared pool, with each worker thread blocking until an IAC is available in

the pool, which is then processed. A main thread was then introduced to fetch the work,

compute the overall mark of assignments and handle due assignments. This resulted in

a throughput as high as a few hundred IACs being marked per second, with only one

thread locking a table per a node and 16 IACs being fetched for 8 threads – a significant

improvement.

6.4. Throughput Testing

Figure 6.1: Graph showing distributed processing of Instance Assignments.

To test the performance of multiple nodes, a cluster of five nodes was created. Each node

ran, within an Arch Linux virtual machine, with a dedicated CPU. A database and file-

share was setup on the host machine. The throughput of instance assignments (IA) was

Reg: 6195601 37

CMPC3P2Y

then tested, which contained the same Java question-type and test inputs criteria, with

the same answer for each instance. The pals_node table was locked, to prevent nodes

from fetching work, whilst test data was inserted. The table was then unlocked, with the

IA table polled every five milliseconds to check if all the work had been marked.

The results (figure 6.1) show a significant decrease in the time taken to process IAs,

as the number of nodes increase. The largest amount of work, 200 assignments, falls

from 15.83 to 3.41 minutes by using five nodes, instead of one – a 78.48% decrease in

time. However, the overall performance increase from each new node decreases. This

is most likely due to the overhead from each node locking the table to fetch work – a

problem mentioned earlier, when each thread was locking the table.

6.5. Limitations & Future Work

6.5.1. Method Invoked

The testing of a method being invoked was not completable due to time constraints. This

could be first solved by generating a tree to determine classes referencing the method.

Each class in the tree would then have to trace to the entry-point of the program. But this

would still not guarantee execution, since an invocation inside of a conditional statement

may never have the condition satisfied. Therefore, guaranteed scenarios could be tested

to solve this issue. However, a new issue arises where the method may be invoked, but

the code does not do the intended feature.

This issue is partially addressed by PALS with the Testing Inputs criteria, which is

testing the functional code-correctness. But even when a method is producing correct

output for a given set of inputs, the code may still not meet the correct specifications.

An example may be sorting an array and making a call to a utility library, which would

produce the correct output. This has, again, been addressed with white-listing, but the

student could still solve a solution with e.g. poor complexity.

6.5.2. Multiple Programming Languages

One of the major drawbacks of the system is that only one programming language is

currently supported. Due to the extensibility of the plugin architecture, additional pro-

Reg: 6195601 38

CMPC3P2Y

gramming languages can be added in the future. PALS could even be extended to sup-

port non-programming assessments, which is already the case with written-response and

multiple choice/response question types (MCQ/MRQ).

6.5.3. Assignment Marker

The current algorithm used for fetching work, by the Assignment Marker plugin, is very

primitive and could be improved. Some criteria are very lightweight and take very little

time to mark, such as testing for the existence of a field. Criteria, such as testing for

inputs, can, depending on the number of tests, take a long period of time. Therefore,

criteria types could compute some form of weight, based on e.g. the number of tests,

with each node configured to collect as many instances of criteria to mark, up to a certain

weight threshold.

Programs may also only work on certain platforms or environment. Therefore, nodes

could be put into groups, with the ability to set the group used to mark a criteria.

6.5.4. Resits

A real world issue, overlooked in the initial design, was the resitting of assignments,

since a student may be delayed from taking an assignment. This could be addressed

by placing students within groups for when the assignment is available, with the option

to add all students to an initial group, with students resitting an assignment added to a

different group, created in the future.

6.5.5. Marking

There may be scenarios where questions may be mandatory for a page/section, zero

marks are awarded where one or more instances of criteria receive zero marks for a

question or a student fails a module in the event they fail an assignment. Therefore,

marking could be improved by allowing custom code, or providing more options, to

compute the overall mark for assignments and questions.

Reg: 6195601 39

CMPC3P2Y

6.5.6. Randomised Snippets

As seen with QuizPACK, randomised snippets of code could be generated, with ques-

tions regarding the structure and flow of execution. This was not in the original require-

ments due to time constraints.

7. Conclusion

This project set out to produce a new third-generation programming assessment system

for programming languages, which also allows for self-guided learning through auto-

mated feedback, to increase objective marking and to reduce the workload of lectuers,

allowing for more exercises to be created, and greater experience for students.

PALS successfully fulfills this requirement, and allows for the assessment of written-

response, MCQ/MRQ and Java programming. Due to the open source licensing and

plugin architecture, further programming languages can be supported, as well as other

forms of assessment for areas such as mathematics.

Also, if student numbers are increasing, the system is scalable, with the option to

add and remove nodes over time. Shared storage can also be used with plugins, with

the ability for updates to be sent to all the nodes within a few seconds, since nodes can

automatically detect changes and reload plugins during runtime.

This project first started with a literature review, which was very important, since it

provided many existing areas to build upon for the design phase, which followed after.

Due to the unique architecture of PALS, it was critical to test the design ideas to avoid

problems later during the project, which would waste time. Initially this used basic test

classes, which evolved in the implementation phase, to using continuous integration and

automated unit testing of the base.

Even if this system is not adopted by many, it may contribute new ideas and help form

the foundations of a new assessment system. Overall this project has been successful

and achieved its original aims, delivering a new system and a completed report, on time.

Reg: 6195601 40

CMPC3P2Y

References

Ala-Mutka, K., Uimonen, T., and JÃd’rvinen, H.-M. (2004). Supporting students in c++

programming courses with automatic program style assessment. Journal of Informa-

tion Technology Education, 3.

Benford, S. D., Burke, E. K., Foxley, E., and Higgins, C. A. (1995). The ceilidh system

for the automatic grading of students on programming courses. ACM-SE 33 Proceed-

ings of the 33rd annual on Southeast regional conference, pages 176–182.

Blumenstein, M., Green, S., Nguyen, A., and Muthukkumarasamy, V. (2004). Game: a

generic automated marking environment for programming assessment. Proceedings

of the International Conference on Information Technology: Coding and Computing,

pages 212–216.

Brusilovsky, P. and Sosnovsky, S. (2005). Individualized exercises for self-assessment

of programming knowledge: An evaluation of quizpack. ACM Journal on Educa-

tional Resources in Computing, 5(3).

Cheang, B., Kurnia, A., Lim, A., and Oon, W.-C. (2003). Automated grading of pro-

gramming assignments. Computers & Education, 41(2):121–131.

Douce, C., Livingstone, D., and Orwell, J. (2005). Automatic test-based assessment of

programming: A review. Journal on Educational Resources in Computing (JERIC),

5(3).

Higgins, C., Gray, G., Symeonidis, P., and Tsintsifas, A. (2005). Automated assessment

and experiences of teaching programming. Journal on Educational Resources in

Computing, 5(3).

Higgins, C., Hegazy, T., Symeonidis, P., and Tsintsifas, A. (2003). The coursemarker

cba system: Improvements over ceilidh. Education and Information Technologies,

8(3):287–304.

Hollingsworth, J. (1960). Automatic graders for programming classes. Communications

of the ACM, 3(10):528–529.

Reg: 6195601 41

CMPC3P2Y

Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. (2010a). Review of recent

systems for automatic assessment of programming assignments. Proceedings of the

10th Koli Calling International Conference on Computing Education Research, pages

86–93.

Ihantola, P., Ahoniemi, T., Karavirta, V., and SeppÃd’lÃd’, O. (2010b). Review of

recent systems for automatic assessment of programming assignments. Proceedings

of the 10th Koli Calling International Conference on Computing Education Research,

pages 86–93.

Jackson, D. and Usher, M. (1997). Grading student programs using assyst. SIGCSE ’97

Proceedings of the twenty-eighth SIGCSE technical symposium on Computer science

education, 29(1):335–339.

Joy, M., Griffiths, N., and Boyatt, R. (2005). The boss online submission and assessment

system. Journal on Educational Resources in Computing, 5(3).

McCabe, T. (1976). A complexity measure. IEEE Transactions on Software Engineer-

ing Journal, SE2(4):308–320.

Rees, M. (1982). Automatic assessment aids for pascal programs. ACM SIGPLAN

Notices, 17(10):33–42.

Saikkonen, R., Malmi, L., and Korhonen, A. (2001). Fully automatic assessment of

programming exercises. ITiCSE ’01 Proceedings of the 6th annual conference on

Innovation and technology in computer science education, 33(3):113–136.

Sedek, K. A., Osman, N., Osman, M. N., and Jusoff, H. K. (2009). Developing a secure

web application using owasp guidelines. CCSECIS – Computer and Information

Science, pages 137–143.

Shepperd, M. (1988). A critique of cyclomatic complexity as a software metric. Soft-

ware Engineering, 3(2):30–36.

Symeonidis, P. (2006). Automated assessment of java programming coursework for

computer science education. University of Nottingham.

Reg: 6195601 42

CMPC3P2Y

Thorburn, G. and Rowe, G. (1997). Pass: An automated system for program assessment.

Computers & Education, 29(4):195–206.

Reg: 6195601 43

CMPC3P2Y

A. Organisation of the accompanying submission disc

The following appendices can be found on the disc submitted with this report, which

also contains code.

Code This can be found in the directory /Codebase.

Documentation JavaDoc from the code-base can be found in the directory /JavaDoc;

each sub-directory is the name of each corresponding directory in /Codebase. The

class diagram can be found in /Project Planning.

GANTT Chart and To-Do Items The GANTT chart and to-do items can be found in the

directory /Project Planning.

Usecase Diagrams and Descriptions These can be found in the directory /Project

Planning/Usecase.

B. Entity Relationship Diagram

Color Meaning Color Meaning

User System Modules

Questions Assignments

Statistics Miscellaneous

Figure B.1: key for figure B.2

Reg: 6195601 44

CMPC3P2Y

Figure B.2: The Entity Relationship Diagram for PALS.

Reg: 6195601 45

	Introduction
	Existing Work
	Evaluation

	Project Planning
	Requirements Analysis
	Time Management
	Software Engineering

	Design and Implementation
	Architecture
	RMI Communication
	Storage
	Settings
	Core
	Website
	Database
	Plugins
	Hooks

	Plugins
	Assignment Marker
	Default Auth
	Miscellaneous

	Applications
	Java Sandbox
	Windows User Tool
	Node

	Administration
	Questions
	Modules & Assignments
	Users and Groups
	Mass-Enrolment
	Stats
	System

	Security

	Design and Implementation – Assessment
	Question Types
	Code Java

	Criteria Types
	Matching
	Java – Code Metrics
	Java – Testing Inputs
	Java – Testing Standard Input and Output
	Java – Testing Existence
	Java – Enum Constants
	Java – Inheritance & Interfaces
	Java – Custom Code

	Evaluation
	Completion
	Previous Systems
	Problems Encountered
	Java Sandbox
	Assignment Marker

	Throughput Testing
	Limitations & Future Work
	Method Invoked
	Multiple Programming Languages
	Assignment Marker
	Resits
	Marking
	Randomised Snippets

	Conclusion
	References
	Organisation of the accompanying submission disc
	Entity Relationship Diagram

